All-Pairs Shortest Paths

All-Pairs Shortest Paths

* We consider the problem of finding shortest paths between all pairs
of vertices in a graph.

* We are given a weighted, directed graph G (V, E') with a weight function
w: E = R that maps edges to real-valued weights.

* We wish to find, for every pair of vertices u, v € V, a shortest (least-
weight) path from u to v, where the weight of a path is the sum of
the weights of its constituent edges.

* Typically want the output in tabular form: the entry in ©’s row and v’s
column should be the weight of a shortest path from u to v.

All-Pairs Shortest Paths

* |f there are no negative cost edges, then we can apply Dijkstra’s algorithm to
each vertex (as the source) of the digraph.

* Recall that Dijkstra’s algorithm runs in O((V + E) log V), if implemented using
binary heap.

. Thusé to find all pair shortest paths, O(V(V + E)logV) =
O(V<=logV + VElogl).

* If the digraph is dense (i.e., the number of edges in G is close to the maximal

number of edges (“2/')), then the complexity becomes O(V3 log V) algorithm.

* However, if we implement the Dijkstra’s algorithm using Fibonacci heap the
total running time=0(V 1gV + E). Then the complexity of implementing all
pair shortest paths for a dense graph becomes O(V3).

All-Pairs Shortest Paths

 Similarly, if the graph has negative-weight edges, we must run the
slower Bellman-Ford algorithm once from each vertex

e The resulting running time is O(V2E), which on a dense graph is
o).

e We shall see how to do better

All-Pairs Shortest Paths: Dynamic
Programming

* So the questions that we need to ask:

 How do we decompose the all-pairs shortest paths problem into
subproblems?

* How do we express the optimal solution of a subproblem in terms of optimal
solutions to some sub-subproblems?

* How do we use the recursive relation from (2) to compute the optimal
solution in a bottom-up fashion?

* How do we construct all the shortest paths?

The structure of an optimal solution

* Consider a shortest path p from vertex i to vertex j, and suppose that
p contains at most m edges.

* We assume that there are no negative-weight cycles.
* Hence m < n — 1 s finite.

* If i = j, then p has weight 0 and no edge

: : : . b’ : :
* If i # j, we decompose p intoi — k — j, where p’ contains at most

m — 1 edges.

* Moreover, p' is a shortest path fromi tok and 6(i,j) = 6(i, k) +
Wy, Where 8(i,j) dente the shortest weight path from i to j

Recursive solution to the all-pairs shortest-
nath problem

* et lg.n) be the minimum weight of any path from vertex i to vertex j
that contains at most m edges.

* When m = 0, there is a shortest path from i to j with no edges if and

only ifi = j. Thus -
[0 _ 0 ifi=]j

t © ifi#]

* Form = 1, we compute li(;.n) as the minimum of ll.(;.n_l) (the weight of

a shortest path from i to j consisting of at most m — 1 edges) and the
minimum weight of any path from i to j consisting of at most m
edges, obtained by looking at all possible predecessors k of j.

Recursive solution to the all-pairs shortest-
nath problem

* We have two cases:

* Consider a shortest path from i to j of length ll.(;.n).
* The shortest path from i to j has at most (m — 1) edges. In that case, we
(m) _ ;(m-1) _ ,(m-1)
have ll] = ll] = ll] +W”
* The shortest path from i to j has (m) edges. Let k be the vertex before j on a

shortest path. Then, lg.n) = lg;n_l) + Wy

* So, combining the two cases, we have:

(m) _ . (m-1) ,
7= i, 0 4w

Recursive solution to the all-pairs shortest-
nath problem

* Thus, we recursively define

1<k<n

_ : (m-1)
= min {1577 + wy)

1™ = min (18."‘1), min {15 + w ,})

* Since shortest path from i to j contains at most n — 1 edges,
5@,) = 17D =1 =17 = ...

Computing the shortest-path weight bottom-up.

* Taking input matrix W = (w;;), compute LW 1@ M1 where LM = (l_(@)

ij
forall i and j. Observe that li(}) = w;;j for all vertices i,j € V, and so LY =W

EXTEND-SHORTEST-PATHS (L, W) * In the following, given matrices
L™M=1) and W, returns the matrix L™,

* That s, it extends the shortest paths
computed so far by one more edge.

* The procedure computes a matrix L' = (l{j),

n = L.rows
let L/ = (ll-’j) be a new n X n matrix
fori = 1ton

for j = 1ton which it returns at the end.
lj; = o0 * It does so by computing equation for all i and
fér k = 1ton , using L for L(m‘ﬂ and l‘,q' for LM,

Zi’j — min(ll.’j, lix + wk;) * Itsrunning time is 9(713) due to the three
nested for loops.

O 1 N I B W —

return L’

Computing the shortest-path weight bottom-up.

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

. .
i = Ve The following procedure

| 5

L) — W computes this sequence
3 form =2ton—1 (L(O), L(l), . L(n_l)) N
4 let L™ be a new n X n matrix 0 (714) time

5 L = EXTEND-SHORTEST-PATHS (LD, W) '

6 return LD

Computing the shortest-path weight bottom-up.

T-g88ge
g~ 8
g8y

m . - . —
O3y (g)
0,0) 4 0 o0 o™
2 oo =5 0 o
o0 00 0 6 0
0 3 8 2 —4 0O 3 8 oo —4 0 13 8 oo —4
3 0O —4 1 7 oo 0 o0 | 7 o 0 oo 1 7
L= o 4 0 5 11 =Min(oo40c>ooo-|-oo4()oooo)
2 -1 -5 0 =2 2-c0 5 0o 2 oo =5 0 o0
8 o0 I 6 0 o0 o0 o0 6 0 o o oo 6 0

To calculate SP from 4 to 2 with two
2 : 1 . 1
liz) = min (liz), min {lik) + sz})

edges, i.e., l(z) -> we find the min cost
= min(oo, min{5,0,—1,00,0}) = -1 °© O O 2

of the (path from 4 to node k with one
edge) and (cost of k to 2)

Computing the shortest-path weight bottom-up.

Notice that the above computation is very similar to matrix multiplication.

That is, if we wish to compute C = A. B of two n X n matrices A and B. Then, for i,j =

1,2,..,n, we compute: "

Cij = Z ik Dy j

k=1
Observe that if we make the following substitutions (in the pseudocode), then we get the
above equation for matrix multiplication.

[m-1_ g, w — b, m -, min = +, + .

* Thus, if we make these changes to EXTEND-SHORTEST-PATHS and %Iso replace oo (the
identit?/ for min) by O (the identity for +), we obtain the same 8(n~)-time procedure for
multiplying square matrices.

Computing the shortest-path weight bottom-up.

* Letting A . B denote the matrix “product” returned by EXTEND-
SHORTEST-PATHS(A, B), we compute the sequence of n — 1 matrices

LY = LoO.w = W,
L® = LY.w = Ww?,

L® = L@.w = W3,

L(n—l) — L(n—2.).W — Wn—l.

Improving the running time

* The following procedure computes the above sequence of matrices by
using this technique of repeated squaring

LY = W,
L® = w2 = W.W,
L® = Wt = W2.W?
L® = W38 = W*.wW*4.
L(zﬂ (—lﬂ) szl (n—1)] . Wzﬂ:l(-’?—lﬂ—l . szlg(n—lﬂ—l

e Since 2/18=DI > 5 — 1, the final product 2Dl equal to L1,

* Therefore, we can compute L™~1 with only [lg(n — 1)] matrix products.

Improving the running time

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

1 n = W.rows

2 LW =w

3 m=1

4 whilem <n—1

5 let L™ be a new n x n matrix

6 L®™ = EXTEND-SHORTEST-PATHS (L™, L))
7 m = 2m

8 return L™

* Because each of the [lg (n — 1)]| matrix products takes 8(n>)
time, FASTERALL-PAIRS-SHORTEST-PATHS runs in 8(n3 Ign) time.

Floyd-Warshall algorithm

* We shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph G (V, E).

* The resulting algorithm, known as the Floyd-Warshall algorithm, runs
in O(V3) time.

* As before, negative-weight edges may be present, but we assume
that there are no negative-weight cycles.

* The Floyd-Warshall algorithm considers the intermediate vertices of a
shortest path, where an intermediate vertex of a simple pathp =<
V1, Vg, ... , Uy > is any vertex of p other than v, or v,.

Floyd-Warshall algorithm

Let V = {1,2, ...,n}. For any pair of verticesi,j € V, consider all paths from i toj
whose intermediate vertices are drawn from {1, 2, ..., k}, and let p be a minimum
weight path among them.

The relationship depends on whether or not k is an intermediate vertex of path p.

If k is not an intermediate vertex of path p, then all intermediate vertices of path p
are intheset {1, 2, ..., k}.

. b1, P2,
If k is an intermediate vertex of path p, then we can decompose p into i Sk —2>].

* Thus, p4 is a shortest path from i to k with all intermediate vertices in the set
{1,2,...,k}.

* In other words, since vertex k is not an intermediate vertex of path p,, all intermediate
vertices of p; are in the set {1, 2, ..., k}.

* Similarly, for p,.

Floyd-Warshall algorithm

* In simple terms,

* In each iteration, we ask... do we have a
shortest path between i and j, with k as
an intermediate vertex?

* For example, consider the following figure
at the top.

° In di((.)), we ask what is the SP between i

and j with no intermediate vertex, i.e., a
path has at most one edge.

* So, we see that dig) =1, dg(;) =2, ..

* That is, di(](.)) = wj;. As discussed above.

Floyd-Warshall algorithm

°In di(.l), we ask do we have a SP between i and
j witﬁ node 1 as an intermediate vertex? Two cases:
(0) (0) (0) 0 _ 4@ -
cIfd;;” <d;;” + dlj , the dl.j = dl.j remains
unchanged.
* However, if d? > d% +d9 then dl.(jl) is updated by

oy, Y
the sum, as dij =d; + dlj .

e Similarly, we find dl.(]?). That is, we check if we have a SP between i and
J with node 2 as an intermediate vertex? Again, we will have two cases:
o If dlgjl) < dl.(zl) + dg.), the dl.(]?) = dl.(jl) remains unchanged.

* However, if dlgjl) < dl.(zl) + dg.), then dl.(? = dl.(zl) + dg.).

Floyd-Warshall algorithm

* Let dg.() be the weight of a shortest path from vertex i to vertex j for which
all intermediate vertices are in the set {1, 2, ..., k}.

* When k = 0, a path from vertex i to vertex j no intermediate vertices at
all.

e Such a path has at most one edge, and hence di(](.)) = w;;j .

* Following the above discussion, we define dl.(j.{) recursively as:

(Wiji lfk =0

k
di(j) =9 . ((k—1) 4(k-1) (k—-1) .
min (df 7V, +dfTY) ifk=1

\

Floyd-Warshall algorithm

FLOYD-WARSHALL (W)
1 n = W.rows
2 DO =w
3 fork = 1ton
4 let D® = (d') be a new n x n matrix
D fori = 1ton
6 for j = 1ton

) _ s (k—1) (k—1) (k—1)
7 d;”’ = min(d; 7, d; 7 +d)
8 return D™

The algorithm runs in time 8(n3).

Compute D)

p0) —

To calculate D@ from D), via intermediate node 1.
* No change in the first row and first column.
* Diagonals will remain 0.

d%) = min (d

d§12) = min(d

dg? = min|(d

(0)
237

(0)
327

(0)
45

) _ o (20)), (0)
dS; = min (a9, d{ +d

(0) (0)
dyy tdy3)

(0) (0)
d3y +dy;)

)
49 +)

min(co, 0 + 8) = D(l) _
min(4,c0 + 3) = 4
min(o0,2+3) =5

min(oo,2 — 4) = =2

3
)
4
5
00

Compute D(?)

p1) —
To calculate D@ from DD, via intermediate node 2.
* No changein the 2nd row and 2nd column. o
* Diagonals will remain 0. O 3 8 “ o
o0 0 o 1 7
di? = min (dg), dg) + d%) = min(8,3 + o) =8 D2 = o0 4 0O 5 11
dﬁ) = min d&), dg) + d&) = min(e0,3+1) =4 - > = 0 2
oo o0 oo 6 0

dﬁ;) = min min(—4,3+7) = —4

min(c,4+1) =5

)
()
(447 +af))
a5y = min (457, a5} + af?)
(45947 +57)

dgzs) = min min(co,4 +7) =11

Floyd-Warshall algorithm

0 3 8 oo —4 NIL | 1 NIL 1
oo 0 o 1 7 NIL NIL NIL 2 2
DO -1 © 4 0 oo o0 n©® — | N 3 NIL NIL NIL
2 oo -5 0 o0 4 NIL 4 NIL NIL
o0 00 0 6 0 NIL NIL NIL 5 NIL
0 3 8 oo —4 NIL 1 1 NIL 1
o0 0 o0 1 7 NIL NIL NIL 2 2
DD =1 © 4 0 oo o0 nM =1 NniL 3 NIL NIL NIL
2 5 =5 0 -2 4 1 4 NIL 1
o0 00 X 6 0 NIL NIL NIL 5 NIL
0 3 8 4 —4 NIL 1 1 2 1
o 0 oo 1 7 NIL NIL NIL 2 2
D=1 ~ 4 0 5 11 n® =] n. 3 nNL 2 2
2 5 =5 0 =2 4 | 4 NIL |
oo o0 oo 6 0 NIL NIL NIL 5 NIL

m: is the predecessor matrix.

Floyd-Warshall algorithm

— N N —

2
2
2
NIL
5 NIL

]
NIL
NIL

4
NIL

NIL NIL
3
3

NIL
NIL
4
NIL NIL

|

e

11

4 2
4 2
NIL 2
4 NIL
4 3 NIL

1
NIL
3
3
3

m4444
Z

0
3
7
2
8

D4

1

1

1

1
NIL

3
NIL
3
3
3

