
All-Pairs Shortest Paths

The content of this presentation is a collection from various books and online resources, such as Introduction to Algorithms, by CLRS and the lecture notes of Dr. Kai and others. 
Thanks to all for their valuable contributions. 



All-Pairs Shortest Paths

• We consider the problem of finding shortest paths between all pairs
of vertices in a graph.

• We are given a weighted, directed graph �(�, �) with a weight function 
�: � → � that maps edges to real-valued weights. 

• We wish to find, for every pair of vertices �, � ∈ �, a shortest (least-
weight) path from � to �, where the weight of a path is the sum of
the weights of its constituent edges. 

• Typically want the output in tabular form: the entry in �’s row and �’s 
column should be the weight of a shortest path from � to �. 



All-Pairs Shortest Paths

• If there are no negative cost edges, then we can apply Dijkstra’s algorithm to 
each vertex (as the source) of the digraph. 

• Recall that Dijkstra’s algorithm runs in O( � + � log �), if implemented using 
binary heap. 

• Thus, to find all pair shortest paths, O � � + � log � =
�(�� log � + �� log �).

• If the digraph is dense (i.e., the number of edges in � is close to the maximal 
number of edges |�|

�
), then the complexity becomes O(�� log �) algorithm.

• However, if we implement the Dijkstra’s algorithm using Fibonacci heap the 
total running time = � � lg � + � . Then the complexity of implementing all 
pair shortest paths for a dense graph becomes O(��).



All-Pairs Shortest Paths

• Similarly, if the graph has negative-weight edges, we must run the 
slower Bellman-Ford algorithm once from each vertex 

• The resulting running time is �(���), which on a dense graph is 
� �� .

• We shall see how to do better 



All-Pairs Shortest Paths: Dynamic 
Programming
• So the questions that we need to ask: 

• How do we decompose the all-pairs shortest paths problem into 
subproblems? 

• How do we express the optimal solution of a subproblem in terms of optimal 
solutions to some sub-subproblems? 

• How do we use the recursive relation from (2) to compute the optimal 
solution in a bottom-up fashion? 

• How do we construct all the shortest paths?



The structure of an optimal  solution

• Consider a shortest path � from vertex � to vertex �, and suppose that 
� contains at most � edges.

• We assume that there are no negative-weight cycles. 
• Hence � ≤ � − 1 is finite.

• If � = �, then � has weight 0 and no edge

• If � ≠ �, we decompose � into � 
��
→ � → �, where �′ contains at most 

� − 1 edges.

• Moreover, �′ is a shortest path from � to � and � �, � =  � �, � +
 ���, where �(�, �) dente the shortest weight path from � to �



Recursive solution to the all-pairs shortest-
path problem

• let ���
(�)

be the minimum weight of any path from vertex � to vertex �
that contains at most � edges. 

• When � = 0, there is a shortest path from � to � with no edges if and 
only if � = �. Thus 

���
(�)

= �
0   �� � = �
∞   �� � ≠ �

• For � ≥ 1, we compute ���
(�)

as the minimum of ���
(���)

(the weight of 
a shortest path from � to � consisting of at most � − 1 edges) and the 
minimum weight of any path from � to � consisting of at most �
edges, obtained by looking at all possible predecessors � of �.



Recursive solution to the all-pairs shortest-
path problem

• We have two cases:

• Consider a shortest path from � to � of length ���
(�)

. 

• The shortest path from � to � has at most (� − 1) edges. In that case, we 

have ���
(�)

= ���
(���)

= ���
(���)

+ ���.

• The shortest path from � to � has (�) edges. Let � be the vertex before � on a 

shortest path. Then, ���
(�)

= ���
(���)

+ ��� .

• So, combining the two cases, we have:

���
(�)

= m��
�����

���
���

+ ���



Recursive solution to the all-pairs shortest-
path problem
• Thus, we recursively define

���
(�)

= min ���
���

, m��
�����

���
���

+ ���

= m��
�����

���
���

+ ���

• Since shortest path from i to j contains at most � − 1 edges,

� �, � =  ���
���

= ���
�

= ���
���

= ⋯



Computing the shortest-path weight bottom-up. 

• In the following, given matrices
�(���) and �, returns the matrix �(�). 

• That is, it extends the shortest paths 
computed so far by one more edge.

• The procedure computes a matrix �� = (���
� ), 

which it returns at the end. 

• It does so by computing equation for all � and 
�, using � for �(���) and �′ for �(�).

• Its running time is � �� due to the three 
nested for loops.

• Taking input matrix � = (���), compute �(�), �(�), … , �(���) where  �(�) = (���
(�)

)

for all � and �. Observe that ���
(�)

= ��� for all vertices �, � ∈  �, and so �(�) = �



Computing the shortest-path weight bottom-up. 

• The following procedure 
computes this sequence 

� � , � � , … , � ��� in 
� �� time.



Computing the shortest-path weight bottom-up. 



+=��� (  )

���
(�)

= min ���
���

, m��
�����

���
���

+ ���

���
(�)

= min ���
� , min ���

� + ���

= min ∞, ��� 5, ∞, −1, ∞, ∞ = −1

To calculate SP from 4 to 2 with two 

edges, i.e., ���
(�)

-> we find the min cost 
of the (path from 4 to node � with one 

edge) and (cost of k to 2)



Computing the shortest-path weight bottom-up. 

• Notice that the above computation is very similar to matrix multiplication. 

• That is, if we wish to compute � = �. � of two � × � matrices � and �. Then, for �, � =
1, 2, … , � , we compute:

��� = � ������

�

���

• Observe that if we make the following substitutions (in the pseudocode), then we get the 
above equation for matrix multiplication.

���� → �,    � → �,  �� → �,   ��� → +, + → .

• Thus, if we make these changes to EXTEND-SHORTEST-PATHS and also replace ∞ (the 
identity for min) by 0 (the identity for +), we obtain the same �(��)-time procedure for 
multiplying square matrices.



Computing the shortest-path weight bottom-up. 

• Letting � . � denote the matrix “product” returned by EXTEND-
SHORTEST-PATHS(A, B), we compute the sequence of � − 1 matrices



Improving the running time
• The following procedure computes the above sequence of matrices by 

using this technique of repeated squaring

• Since 2 �� (���) ≥ � − 1, the final product �� �� (���)
is equal to �(���).

• Therefore, we can compute �(���) with only lg (� − 1) matrix products.



Improving the running time

• Because each of the lg (� − 1) matrix products takes �(��)
time, FASTERALL-PAIRS-SHORTEST-PATHS runs in � �� lg � time. 



Floyd-Warshall algorithm 

• We shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph �(�, �). 

• The resulting algorithm, known as the Floyd-Warshall algorithm, runs 
in Θ �� time. 

• As before, negative-weight edges may be present, but we assume 
that there are no negative-weight cycles.

• The Floyd-Warshall algorithm considers the intermediate vertices of a 
shortest path, where an intermediate vertex of a simple path � = <
��, ��, … , �� > is any vertex of � other than �� or ��.



Floyd-Warshall algorithm 

• Let � = {1,2, … , �}. For any pair of  vertices �, � ∈ �, consider all paths from � to �
whose intermediate vertices are drawn from 1, 2, … , � , and let � be a  minimum 
weight path among them.

• The relationship depends on whether or not � is an intermediate vertex of path �. 

• If � is not an intermediate vertex of path �, then all intermediate vertices of path �
are in the set 1, 2, … , � . 

• If � is an intermediate vertex of path �, then we can decompose � into � 
��
→ �

��
→ �. 

• Thus, �� is a shortest path from � to � with all intermediate vertices in the set 
1, 2, … , � . 
• In other words, since vertex � is not an intermediate vertex of path ��, all intermediate 

vertices of �� are in the set 1, 2, … , � . 

• Similarly, for ��.



Floyd-Warshall algorithm 

• In simple terms, 
• In each iteration, we ask… do we have a 

shortest path between � and �, with � as 
an intermediate vertex?

• For example, consider the following figure 
at the top.

• In ���
(�)

, we ask what is the SP between �
and � with no intermediate vertex, i.e., a 
path has at most one edge. 
• So, we see that ���

(�)
= 1, ���

(�)
= 2, … 

• That is, ���
(�)

= ���. As discussed above. 



Floyd-Warshall algorithm 

• In ���
(�)

, we ask do we have a SP between � and 
� with node 1 as an intermediate vertex? Two cases:
• If ���

(�)
≤ ���

(�)
+ ���

(�)
, the ���

(�)
= ���

(�)
remains 

unchanged. 

• However, if ���
(�)

> ���
(�)

+ ���
(�)

, then ���
(�)

is updated by 

the sum, as ���
(�)

= ���
(�)

+ ���
(�)

. 

• Similarly, we find ���
(�)

. That is, we check if we have a SP between � and 
� with node 2 as an intermediate vertex? Again, we will have two cases:
• If ���

(�)
≤ ���

(�)
+ ���

(�)
, the ���

(�)
= ���

(�)
remains unchanged. 

• However, if ���
(�)

≤ ���
(�)

+ ���
(�)

, then ���
(�)

= ���
(�)

+ ���
(�)

. 



Floyd-Warshall algorithm 

• Let ���
(�)

be the weight of a shortest path from vertex � to vertex � for which 
all intermediate vertices are in the set 1, 2, … , � . 

• When � = 0, a path from vertex � to vertex � no intermediate vertices at 
all.

• Such a path has at most one edge, and hence ���
(�)

= ��� . 

• Following the above discussion, we define ���
(�)

recursively as: 

���
(�)

= �
���,                                                �� � = 0

min ���
���

, ���
���

+ ���
���

      �� � ≥ 1



Floyd-Warshall algorithm 

The algorithm runs in time �(��).



• To calculate �(�) from �(�), via intermediate node 1.
• No change in the first row and first column. 
• Diagonals will remain 0. 

• ���
(�)

= min ���
� , ���

� + ���
� = min ∞, ∞ + 8 = ∞

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min 4, ∞ + 3 = 4

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min ∞, 2 + 3 = 5

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min ∞, 2 − 4 = −2

Compute �(�)



Compute �(�)

• To calculate �(�) from �(�), via intermediate node 2.
• No change in the 2nd row and 2nd column. 
• Diagonals will remain 0. 

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min 8, 3 + ∞ = 8

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min ∞, 3 + 1 = 4

• ���
(�)

= min ���
� , ���

� + ���
� = min −4, 3 + 7 = −4

• ���
(�)

= min ���
� , ���

� + ���
� = min ∞, 4 + 1 = 5

• ���
(�)

= min ���
�

, ���
�

+ ���
�

= min ∞, 4 + 7 = 11



Floyd-Warshall algorithm 

�:  is the predecessor matrix. 



Floyd-Warshall algorithm 


