The content of this presentation is a collection from various books and online resources, such as Introduction to Algorithms, by CLRS and the lecture notes of Dr. Kai and others. Thanks to all for their valuable contributions.

- We consider the problem of finding shortest paths between all pairs of vertices in a graph.
- We are given a weighted, directed graph $G(V, E)$ with a weight function $w: E \to R$ that maps edges to real-valued weights.
- We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-
weight) path from u to v , where the weight of a path is the sum of the weights of its constituent edges.
- Typically want the output in tabular form: the entry in u' s row and v' s column should be the weight of a shortest path from u to v .

- If there are no negative cost edges, then we can apply Dijkstra's algorithm to each vertex (as the source) of the digraph.
- Recall that Dijkstra's algorithm runs in $O((V + E) \log V)$, if implemented using binary heap.
- Thus, to find all pair shortest paths, $O(V(V + E) \log V) =$ $O(V^2 \log V + V_E \log V).$
- If the digraph is dense (i.e., the number of edges in G is close to the maximal number of edges ${|V| \choose 2}$), then the complexity becomes $\mathrm{O}(V^3 \log V)$ algorithm.
- However, if we implement the Dijkstra's algorithm using Fibonacci heap the total running time = $O(V \lg V + E)$. Then the complexity of implementing all pair shortest paths for a dense graph becomes $O(V^3)$.

- Similarly, if the graph has negative-weight edges, we must run the slower Bellman-Ford algorithm once from each vertex
- The resulting running time is $O(V^2E)$, which on a dense graph is $O(V⁴)$.
- We shall see how to do better

All-Pairs Shortest Paths: Dynamic Programming

- So the questions that we need to ask:
	- How do we decompose the all-pairs shortest paths problem into subproblems?
	- How do we express the optimal solution of a subproblem in terms of optimal solutions to some sub-subproblems?
	- How do we use the recursive relation from (2) to compute the optimal solution in a bottom-up fashion?
	- How do we construct all the shortest paths?

The structure of an optimal solution

- Consider a shortest path p from vertex i to vertex j , and suppose that p contains at most m edges.
- We assume that there are no negative-weight cycles.
	- Hence $m \leq n-1$ is finite.
- If $i = j$, then p has weight 0 and no edge
- If $i \neq j$, we decompose p into $i \stackrel{p'}{\rightarrow} k \rightarrow j$, where p' contains at most $m-1$ edges.
- Moreover, p' is a shortest path from i to k and $\delta(i, j) = \delta(i, k) +$ w_{ki} , where $\delta(i,j)$ dente the shortest weight path from *i* to *j*

Recursive solution to the all-pairs shortestpath problem

- let $l_{ij}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- When $m = 0$, there is a shortest path from i to j with no edges if and only if $i = j$. Thus

$$
l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}
$$

• For $m\geq 1$, we compute $l_{ij}^{(m)}$ as the minimum of $l_{ij}^{(m-1)}$ (the weight of a shortest path from *i* to *j* consisting of at most $m - 1$ edges) and the minimum weight of any path from \tilde{i} to j consisting of at most m edges, obtained by looking at all possible predecessors k of j .

Recursive solution to the all-pairs shortestpath problem

- We have two cases:
- Consider a shortest path from i to j of length $l_{ij}^{\backslash \prime}$ (m) .
	- The shortest path from *i* to *j* has at most $(m 1)$ edges. In that case, we have $l_{ij}^{(m)} = l_{ij}^{(m-1)} = l_{ij}^{(m-1)} + w_{jj}$.
	- The shortest path from i to j has (m) edges. Let k be the vertex before j on a shortest path. Then, $l_{ij}^{(m)} = l_{ik}^{(m-1)} + w_{kj}$.
- So, combining the two cases, we have:

$$
l_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}
$$

Recursive solution to the all-pairs shortestpath problem

• Thus, we recursively define

$$
l_{ij}^{(m)} = \min \left(l_{ij}^{(m-1)}, \min_{\substack{1 \le k \le n \\ 1 \le k \le n}} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\} \right)
$$

=
$$
\min_{1 \le k \le n} \left\{ l_{ik}^{(m-1)} + w_{kj} \right\}
$$

• Since shortest path from i to j contains at most $n-1$ edges, $\delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \cdots$

• Taking input matrix $W = (w_{ij})$, compute $L^{(1)}$, $L^{(2)}$, ..., $L^{(n-1)}$ where $L^{(m)} = (l_{ij}^{(n)})$ $\binom{m}{i}$ for all i and j . Observe that $l_{ij}^{(1)} = w_{ij}$ for all vertices $i, j \in V$, and so $L^{(1)} = W$

EXTEND-SHORTEST-PATHS (L, W)

- $n = L$ rows let $L' = (l'_{ii})$ be a new $n \times n$ matrix $\overline{2}$ for $i = 1$ to n 3 4 for $j = 1$ to n 5 $l'_{ij} = \infty$ for $k = 1$ to n 6 $\overline{7}$ 8 return L'
- In the following, given matrices $L^{(m-1)}$ and W, returns the matrix $L^{(m)}$.
- That is, it extends the shortest paths computed so far by one more edge.
- The procedure computes a matrix $L' = (l'_{ij})$, which it returns at the end.
- It does so by computing equation for all i and j, using L for $L^{(m-1)}$ and L' for $L^{(m)}$.
- $l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})$ Its running time is $\theta(n^3)$ due to the three nested **for** loops.

 S LOW-ALL-PAIRS-SHORTEST-PATHS (W)

- $1 \quad n = W$ rows
- 2 $L^{(1)} = W$
- 3 for $m = 2$ to $n 1$
- let $L^{(m)}$ be a new $n \times n$ matrix $\overline{4}$
- $L^{(m)} =$ EXTEND-SHORTEST-PATHS $(L^{(m-1)}, W)$ 5
- 6 return $L^{(n-1)}$

• The following procedure computes this sequence $L^{\left(0 \right)}, L^{\left(1 \right)}, \ldots, L^{\left({n - 1} \right)}$ in $\dot{\theta}(n^4)$ time.

$$
L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}
$$

$$
L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}
$$

$$
L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 0 & 0 & \infty & 6 & 0 \end{pmatrix}
$$

$$
L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 4 & 0 & \infty & \infty \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} = Min \left(\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & 6 \\ \infty & 4 & 0 & \infty & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & 6 & 0 \end{pmatrix} \right)
$$

$$
l_{42}^{(2)} = \min(l_{42}^{(1)}, \min\{l_{4k}^{(1)} + w_{k2}\})
$$

= min(∞ , min{5, ∞ , -1, ∞ , ∞)} = -1

To calculate SP from 4 to 2 with two edges, i.e., $l_{42}^{(2)}\rightarrow$ we find the min cost of the (path from 4 to node k with one edge) and (cost of k to 2)

- Notice that the above computation is very similar to matrix multiplication.
- That is, if we wish to compute $C = A$. B of two $n \times n$ matrices A and B. Then, for i, $i =$ $1, 2, \ldots, n$, we compute: \sim

$$
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
$$

• Observe that if we make the following substitutions (in the pseudocode), then we get the above equation for matrix multiplication.

 $l^{m-1} \to a, \qquad w \to b, \qquad l^m \to c, \qquad min \to +, \qquad + \to$.

• Thus, if we make these changes to EXTEND-SHORTEST-PATHS and also replace ∞ (the identity for min) by 0 (the identity for +), we obtain the same $\theta(n^3)$ -time procedure for multiplying square matrices.

• Letting A . B denote the matrix "product" returned by EXTEND-SHORTEST-PATHS(A, B), we compute the sequence of $n - 1$ matrices

$$
L^{(1)} = L^{(0)} \cdot W = W,
$$

\n
$$
L^{(2)} = L^{(1)} \cdot W = W^2,
$$

\n
$$
L^{(3)} = L^{(2)} \cdot W = W^3,
$$

\n
$$
\vdots
$$

\n
$$
L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}.
$$

Improving the running time

• The following procedure computes the above sequence of matrices by using this technique of *repeated squaring*

$$
L^{(1)} = W,
$$

\n
$$
L^{(2)} = W^2 = W \cdot W,
$$

\n
$$
L^{(4)} = W^4 = W^2 \cdot W^2
$$

\n
$$
L^{(8)} = W^8 = W^4 \cdot W^4,
$$

\n
$$
\vdots
$$

\n
$$
L^{(2\lceil \lg(n-1) \rceil)} = W^{2\lceil \lg(n-1) \rceil - 1} = W^{2\lceil \lg(n-1) \rceil - 1} \cdot W^{2\lceil \lg(n-1) \rceil - 1}
$$

- Since $2^{\lceil \lg(n-1) \rceil} \geq n-1$, the final product $L^{2^{\lceil \lg(n-1) \rceil}}$ is equal to $L^{(n-1)}$.
- Therefore, we can compute $L^{(n-1)}$ with only $\lceil \lg(n-1) \rceil$ matrix products.

Improving the running time

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

1
$$
n = W
$$
.rows
\n2 $L^{(1)} = W$
\n3 $m = 1$
\n4 **while** $m < n - 1$
\n5 \qquad let $L^{(2m)}$ be a new $n \times n$ matrix
\n6 $L^{(2m)} =$ EXTEND-SHORTEST-PATHS $(L^{(m)}, L^{(m)})$
\n7 $m = 2m$
\n8 **return** $L^{(m)}$

• Because each of the $\lceil \lg(n-1) \rceil$ matrix products takes $\theta(n^3)$ time, FASTERALL-PAIRS-SHORTEST-PATHS runs in $\theta(n^3 \lg n)$ time.

- We shall use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph $G(V, E)$.
- The resulting algorithm, known as the *Floyd-Warshall algorithm*, runs in $\Theta(V^3)$ time.
- As before, negative-weight edges may be present, but we assume that there are no negative-weight cycles.
- The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an *intermediate* vertex of a simple path $p = \langle$ $v_1, v_2, ...$, $v_n >$ is any vertex of p other than v_1 or v_2 .

- Let $V = \{1,2,...,n\}$. For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are drawn from $\{1, 2, ..., k\}$, and let p be a minimum weight path among them.
- The relationship depends on whether or not k is an intermediate vertex of path p .
- If k is not an intermediate vertex of path p , then all intermediate vertices of path p are in the set $\{1, 2, ..., k\}$.
- If k is an intermediate vertex of path p , then we can decompose p into i p_{1} $\stackrel{r}{\rightarrow} k$ p_{2} $\stackrel{fZ}{\rightarrow} j$.
- Thus, p_1 is a shortest path from *i* to k with all intermediate vertices in the set ${1, 2, ..., k}.$
	- In other words, since vertex k is not an intermediate vertex of path p_1 , all intermediate vertices of p_1 are in the set $\{1, 2, ..., k\}$.
- Similarly, for p_2 .

- In simple terms,
	- In each iteration, we ask… do we have a shortest path between i and j , with k as an intermediate vertex?
	- For example, consider the following figure at the top.
	- In $d_{ij}^{(0)}$, we ask what is the SP between i and \tilde{j} with no intermediate vertex, i.e., a path has at most one edge.
		- So, we see that $d_{12}^{(0)} = 1$, $d_{23}^{(0)} = 2$, ...
		- That is, $d_{ij}^{(0)} = w_{ij}$. As discussed above.

- In d_{ij}^G (1) , we ask do we have a SP between i and *i* with node 1 as an intermediate vertex? Two cases:
	- If $d_{ij}^{(0)} \leq d_{i1}^{(0)} + d_{1j}^{(0)}$, the $d_{ij}^{(0)} = d_{ij}^{(1)}$ remains unchanged.
	- However, if $d_{ij}^{(0)} > d_{i1}^{(0)} + d_{1j}^{(0)}$, then $d_{ij}^{(1)}$ is updated by the sum, as $d_{ij}^{(1)} = d_{i1}^{(0)} + d_{1j}^{(0)}$.

- Similarly, we find $d_{ij}^{(2)}$ (2) . That is, we check if we have a SP between i and j with node 2 as an intermediate vertex? Again, we will have two cases:
	- If $d_{ij}^{(1)} \leq d_{i2}^{(1)} + d_{2j}^{(1)}$, the $d_{ij}^{(2)} = d_{ij}^{(1)}$ remains unchanged.
	- However, if $d_{ij}^{(1)} \leq d_{i2}^{(1)} + d_{2j}^{(1)}$, then $d_{ij}^{(2)} = d_{i2}^{(1)} + d_{2j}^{(1)}$.

- Let $d_{ij}^{(k)}$ be the weight of a shortest path from vertex *i* to vertex *j* for which all intermediate vertices are in the set $\{1, 2, ..., k\}$.
- When $k = 0$, a path from vertex *i* to vertex *j* no intermediate vertices at all.
- Such a path has at most one edge, and hence $d_{ij}^{(0)} = w_{ij}$.
- Following the above discussion, we define $d_{ij}^{(k)}$ recursively as:

$$
d_{ij}^{(k)} = \begin{cases} w_{ij}, & if k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & if k \ge 1 \end{cases}
$$

 $FLOYD-WARSHALL(W)$

1 $n = W$ rows 2 $D^{(0)} = W$ 3 for $k = 1$ to n 4 let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix 5 for $i = 1$ to n 6 for $j = 1$ to n $d_{ij}^{(k)} = \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})$ $\overline{7}$ return $D^{(n)}$ 8

The algorithm runs in time $\theta(n^3)$.

Compute $D^{(1)}$

- To calculate $D^{(1)}$ from $D^{(0)}$, via intermediate node 1.
	- No change in the first row and first column.
	- Diagonals will remain 0.

•
$$
d_{23}^{(1)} = \min\left(d_{23}^{(0)}, d_{21}^{(0)} + d_{13}^{(0)}\right) = \min(\infty, \infty + 8) = \infty
$$

•
$$
d_{32}^{(1)} = \min\left(d_{32}^{(0)}, d_{31}^{(0)} + d_{12}^{(0)}\right) = \min(4, \infty + 3) = 4
$$

•
$$
d_{42}^{(1)} = \min\left(d_{42}^{(0)}, d_{41}^{(0)} + d_{12}^{(0)}\right) = \min(\infty, 2 + 3) = 5
$$

• $d_{45}^{(1)} = \min\left(d_{45}^{(0)}, d_{41}^{(0)} + d_{15}^{(0)}\right) = \min(\infty, 2 - 4) = -2$

- To calculate $D^{(2)}$ from $D^{(1)}$, via intermediate node 2.
	- No change in the 2nd row and 2nd column.
	- Diagonals will remain 0.

•
$$
d_{13}^{(2)} = \min\left(d_{13}^{(1)}, d_{12}^{(1)} + d_{23}^{(1)}\right) = \min(8, 3 + \infty) = 8
$$

•
$$
d_{14}^{(2)} = \min\left(d_{14}^{(1)}, d_{12}^{(1)} + d_{24}^{(1)}\right) = \min(\infty, 3 + 1) = 4
$$

- $d_{15}^{(2)} = \min\left(d_{15}^{(1)}, d_{12}^{(1)} + d_{25}^{(1)}\right) = \min(-4, 3 + 7) = -4$
- $d_{34}^{(2)} = \min\left(d_{34}^{(1)}, d_{32}^{(1)} + d_{24}^{(1)}\right) = \min(\infty, 4 + 1) = 5$
- $d_{35}^{(2)} = \min\left(d_{35}^{(1)}, d_{32}^{(1)} + d_{25}^{(1)}\right) = \min(\infty, 4 + 7) = 11$

$$
D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}
$$

$$
D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & 1 & 1 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}
$$

$$
D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{
$$

 π : is the predecessor matrix.

$$
D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}
$$

$$
D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \end{pmatrix}
$$

$$
D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \end{pmatrix}
$$